ГЛАВА 14 Литература

Begum, N., L. Ulanova, J. Wang, and E. Keogh. 2016. “Accelerating Dynamic Time Warping Clustering with a Novel Admissible Pruning Strategy.” In 2016 Ieee International Conference on Big Data (Big Data).

Cleveland, R. B., W. S. Cleveland, J. E. McRae, and I. J. Terpenning. 1990. “STL: A Seasonal-Trend Decomposition Procedure Based on Loess.” Journal of Official Statistics 6 (1): 3–33.

Giorgino, T. 2009. “Computing and Visualizing Dynamic Time Warping Alignments in R: The Dtw Package.” Journal of Statistical Software 31 (7): 1–24.

Grolemund, G., and H. Wickham. 2011. “Dates and Times Made Easy with Lubridate.” Journal of Statistical Software 40 (3).

Hyndman, R., and G. Athanasopoulos. 2019. Forecasting: Principles and Practice. 3rd ed. OTexts.

James, N. A., A. Kejariwal, and D. S. Matteson. 2015. “Leveraging Cloud Data to Mitigate User Experience from "Breaking Bad".” In Conference on Knowledge Discovery and Data Mining, Kdd’15.

Kang, Y., R. J. Hyndman, and K. Smith-Miles. 2017. “Visualising Forecasting Algorithm Performance Using Time Series Instance Spaces.” International Journal of Forecasting 33 (2): 345–58.

Liao, T. W. 2005. “Clustering of Time Series Data - a Survey.” Pattern Recognition 38: 1857–74.

Sarda-Espinosa, A. 2019. Comparing Time-Series Clustering Algorithms in R Using the Dtwclust Package.

Scott, S. L., and H. R. Varian. 2014. “Predicting the Present with Bayesian Structural Time Series.” International Journal of Mathematical Modelling and Numerical Optimisation 5 (1/2): 4–23.

Tashman, L. 2000. “Out-of Sample Tests of Forecasting Accuracy: A Tutorial and Review.” International Journal of Forecasting 16: 437–50.

Taylor, S. J., and B. Letham. 2017. “Forecasting at Scale.” The American Statistician 72 (1): 37–45.

Vallis, J., J. Hochenbaum, and A. Kejariwal. 2014. “A Novel Technique for Long-Term Anomaly Detection in the Cloud.” In HotCloud’14: 6th Usenix Workshop on Hot Topics in Cloud Computing.

Wang, E., D. Cook, and R. J. Hyndman. 2020. “A New Tidy Data Structure to Support Exploration and Modeling of Temporal Data.” Journal of Computational and Graphical Statistics 0: 1–13.

Цыплаков, А. 2011. “Введение в моделирование пространства состояний.” Квантиль 9: 1–34.